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The responses of a multi-degree-of-freedom model of a moored vessel are analysed, accounting
for the hydroelastic interaction between the nonlinear wave hydrodynamics and the nonlinear
mooring sti!ness. A two-scale perturbation method developed by Sarkar & Eatock Taylor to
determine low-frequency hydrodynamic forces on a single-degree-of-freedom model of a non-
linearly moored vessel has been extended to analyse the nonlinear multi-degree-of-freedom
dynamics of the system. Surge, heave and pitch motions are considered. The perturbation
equations of successive orders are derived. To illustrate the approach, semi-analytical expres-
sions for the higher-order hydrodynamic force components have been obtained for a truncated
circular cylinder in "nite water depth. In addition to conventional quadratic force transfer
functions, a new type of higher-order force transfer function is introduced. This is used to
characterize the hydrodynamic forces on the vessel which arise due to nonlinearity of the
mooring sti!ness. These are a type of radiation force, generated by the nonlinear interaction
of the #uid}structure coupled system. Based on a Volterra series model, the power
spectral densities of the new higher-order forces are then derived for the case of Gaussian
random seas. It is shown that the additional response arising due to nonlinear dynamics of the
mooring system can signi"cantly contribute to low-frequency drift forces and responses of the
vessel. Unlike conventional non-Gaussian second-order forces which are quadratic transforma-
tions of a Gaussian random process, the new higher-order forces arising due to the nonlinear
mooring sti!ness are polynomials of a Gaussian random process (up to fourth order for
a Du$ng oscillator model). This may signi"cantly in#uence the extreme responses.

( 2001 Academic Press
1. INTRODUCTION

TYPICALLY, SOME MOORED FLOATING STRUCTURES such as semi-submersibles and catenary
moored tankers show signi"cant nonlinearity in their restoring characteristics. In the
traditional design and analysis procedure, a single-scale Stokes perturbation expansion
taken to second order in wave steepness is used to study the nonlinear hydrodynamic
interaction which leads to low-frequency drift forces. This technique inherently assumes
that the mooring sti!ness is linear. In a recent paper (Sarkar & Eatock Taylor 1998), it is
pointed out that the nonlinear dynamics of the vessel can signi"cantly in#uence the
low-frequency surge force arising due to nonlinear wave}body interactions. The two-scale
perturbation technique developed in that paper for a single-degree-of-freedom model has
been extended here to analyse the coupled surge, heave and pitch motions of the vessel
restrained by a weakly nonlinear mooring system.

As a speci"c example, the low-frequency forces and responses of a truncated cylinder have
been studied. The simple geometry of the structure permits a semi-analytical solution. It is
0889}9746/01/010133#18 $35.00/0 ( 2001 Academic Press



134 A. SARKAR AND R. EATOCK TAYLOR
shown that the low-frequency components of the surge force and pitch moment are
signi"cantly in#uenced by the additional "rst-order response of the vessel arising due to the
e!ect of nonlinear mooring sti!ness.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

A #oating vessel undergoing oscillations in surge (a), heave (b) and pitch (t) motions due to
wave actions is considered, as shown in Figure 1. Assuming potential #ow theory, the #uid
motion is described by the velocity potential u (x, y, z, t) which satis"es Laplace's equation
and the usual no #ow boundary condition at the sea-bottom. The combined kinematic and
dynamic free surface boundary condition on z"0 is given by
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where d is the wave steepness.
To obtain the kinematic boundary condition at the oscillating body surface S

0
, two sets

of axes are de"ned [following Ogilvie (1983)]: the inertial axes and the body-"xed axes. The
position vector of a point in space is given by X and X@ in the inertial and the body-"xed
axes, respectively. It can then be shown that the kinematic boundary condition at the body
surface is (Ogilvie 1983)
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Figure 1. Physical diagram and coordinate system of a truncated cylinder.
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where n@ denotes the direction cosine vector on the body surface in the body-"xed axes. The
same vector is denoted by n in the inertial axes. S

m
is the mean wetted surface of the body in

its equilibrium position. The vectors n and W and matrix H are given by
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2 C
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0 0 0

0 0 t2D .
The zero-mean dynamic response vector is de"ned as A. The response is also assumed to
have a mean A1 due to nonlinear e!ects. Furthermore, an o!set A1

s
accounts for the e!ects of

wind and current. The vectors A, A1 and A1
s
are given by
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This leads to a static equation for the mean o!set A1
s
and the following equation of motion

for the vessel:

[M]MAG N#[C]MA0 N#[K][MAN#MA1 N]#cMR(A, A1 , A1
s
)N"MFN , (3)

where [M], [C] and [K] are the mass, damping and sti!ness matrices of the vessel. The
vector R (A, A1 , A1

s
) denotes the nonlinear restoring forces arising due to nonlinearity of the

mooring. It contains terms up to cubic in the vessel displacements for a multi-degree
Du$ng oscillator model. The strength of nonlinearity in the mooring sti!ness is given by c.
The functional form of R(A, A1 , A1

s
) depends on the mooring line arrangements, and is given

in Section 4. It is assumed that the vessel is moored by identical mooring cables on either
side. Consequently, a single parameter c is su$cient to describe the nonlinear mooring
sti!ness e!ect.

3. NONDIMENSIONAL EQUATIONS

The above set of equations is nondimensionalized with respect to wave amplitude a,
acceleration due to gravity g and wave number k, following Dean & Dalrymple (1993). The

nondimensionalized variables are m)"m/a, t)"t/ka, u("ku/(aJgk), t)"Jgkt, X< @"kX@,
d"ka and e"ca2. The nondimensional equations for u take the following form:
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and the nondimensional equations of motion are
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The above set of equations forms a nonlinear boundary value problem with two indepen-
dent small dimensionless parameters d and e. Consequently, we can express the nondimen-
sional quantities in the following forms:
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As our primary interest is in investigating the interactions of nonlinear mooring sti!ness
and wave hydrodynamics, we focus our attention on the higher-order perturbation term ed
only, as this accounts for the aforementioned interaction e!ect. The terms proportional to
e2 and d2 are not considered here. This may be justi"ed for the following reasons. As we are
mainly interested in the resonant low-frequency response of the moored vessel, the hy-
drodynamic force proportional to d2 is expected to have little contribution to the total
response. Under the assumption of weak nonlinearity of the mooring sti!ness, the perturba-
tion term proportional to e2 may have insigni"cant e!ect on the total response of the
structure. However, further studies are needed to justify these assumptions rigorously. On
the other hand, the inclusion of the other higher-order terms would considerably increase
the computational complexity of obtaining semi-analytical solutions for the wave hydro-
dynamics, even for a simple geometry of the vessel.

By equating the powers of d and e, a set of coupled linear di!erential equations is
obtained which can be solved sequentially. The details of the procedure are described in
Sarkar & Eatock Taylor (1998) for a single-degree-of-freedom system and will not be
repeated here. It leads to the following equations involving the dynamic body boundary
conditions on the undisturbed body surface S1

m
, which are shown in dimensional form.

I. Equations for (d0, e0):
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II. Equations for (d0, e1):
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III. Equations for (d1, e0):
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where

MF1
0
N"G

f 1
0a
f 1
0t
f 1
0bH , (18)

f 1
0a"!o P

SM m

M[u1
0t
#(n0

0
#W0

0
3X) '$u0

0t
#1

2
D$u0

0
D2]n#(W0

0
3n)u0

0t
Nds

#

og

2 P
CM m

(g0
0
!b0

0
#xt0

0
)2ndlD

#0.10/%/5 !-0/' 5)% x-!9*4
, (19)

f 1
0t"!oP

S
1
m

M[u1
0t
#(n0

0
#W0

0
3X) '$u0

0t
#1

2
D$u0

0
D2](X3n)

#[(n0
0
3n)#(W0

0
3n)3X]u0

0t
Nds

#

og

2 P
C
M
m

(g0
0
!b0

0
#xt0

0
)2(X3n) dlD

#0.10/%/5 !-0/' 5)% y-!9*4
, (20)

where CM
m

is the contour de"ning the intersection of the undisturbed body with the
undisturbed free surface.

IV. Equations for (d1, e1):
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Here F3 (A0
0
, A1

0
, A1

s
) denotes the perturbation term arising from the nonlinear restoring force

directly, in the absence of #uid}structure interaction. The speci"c functional form of
F3 depends on the nonlinear function R in equation (3).

4. ANALYSIS FOR A TRUNCATED CYLINDER

Based on the above formulation, a truncated cylinder shown in Figure 1 has been studied.
The simple geometry of the vessel permits a semi-analytical solution. The solution of the
"rst-order potential u0

0
is standard. It consists of two parts: the scattered potential u

s
, which

consists of incident and di!racted potentials, and the radiation potential u
r
which consists

of three components, namely, surge potential ua, heave potential ub, and pitch potential ut.
The expression for the scattered potential of a wave with amplitude a and frequency u is
given by (Huang & Eatock Taylor 1996)
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The term H
n
(x) is the nth-order Hankel function of the "rst kind. e

0
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n
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the wavenumber of the incident wave, and m
j
, j'0 are the real roots of the equation
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The coe$cients BE9
jn

and BI/
jn

are obtained from the boundary condition on the vertical surface of
the cylinder, and by matching with the solution for the cylindrical column of #uid below the
truncated cylinder. If the coe$cients BE9

jn
are set to zero, u0

0s
corresponds to the scattered

potential of a bottom-seated vertical cylinder. The expression for the radiation potential is
given by
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and t3 0
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are the complex amplitudes of the "rst-order surge, heave and pitch

motions.
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Following Yeung (1981), the expressions for the radiation potentials can be written as
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Using the perturbation expressions of the kinematic condition in the body boundary, it can be
shown that u0

1
consists of only radiation potentials arising due to nonlinear body motions a0

1
, b0

1
,

t0
1

and given by
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where a8 0
1t
, bI 0

1t
and tI 0

1t
are the complex amplitudes of surge, heave and pitch motion. In

calculating the low-frequency forces, the e!ects of the nonlinear potentials u1
0

and u1
1

are
neglected. This is analogous to the approximation usually made in calculating drift forces in
random waves, and it permits analytical solutions to be obtained for the low frequency forces
F1
0

and F1
1

with the already known potentials u0
0

and u0
1
.

In the equation of motion, the mass and damping matrices of the #oating structure (as shown
in Figure 1) are

[M]"C
m#maa mat 0

mat I#mtt 0

0 0 m#mbbD , (36)

[C]"C
caa cat 0

cat ctt 0

0 0 cbbD . (37)

In the mass matrix [M], m and I are the mass and moment of inertia of the vessel in the dry
state; maa, mtt and mbb indicate the added mass in surge, pitch and heave, respectively; and
mat is the cross-added mass in surge and pitch. Similarly, caa, ctt, cbb and cat are the
damping for surge, pitch, heave and cross-added damping between surge and pitch,
respectively. These damping terms are assumed to include the "rst-order added damping,
mooring line damping, wave-drift and viscous damping.

Using a Du$ng oscillator model, the nonlinear load}displacement characteristic of
the cables on each side is given by

¹"kx#ckx3, (38)
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where ¹, x, k and c are the total axial tension of the cables, axial cable displacement due to
vessel motion, total linear cable sti!ness, and strength of nonlinearity in the cable sti!ness,
respectively. The sti!ness matrix for the speci"ed mooring arrangement is then

[K]"C
kaa kat 0

kat ktt 0

0 0 kbbD , (39)

where kaa"2k cos2 h; kat"2k cos h (b cos h#R sin h); kta"kat ; ktt"2k(b cos h#
R sin h)2#=]GM and kbb"2k sin2 h#onR2g.=, GM and h are the weight, metacen-
tric height and cable inclination to the horizontal, and b is the height of the point of
attachment of the cables above the base of the cylinder. Consequently, the vector MRN in
equation (3), representing the nonlinearity of the mooring restoring force for the con"gura-
tion in Figure 1, is given by
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r designating left- and right-side mooring lines; k"a6
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cos h and a6

s
"surge o!set due to

wind and current. For simplicity, the e!ects of mean pitch angle t1
s
and heave displacement

bM
s
due to wind and current are assumed to be negligible compared with a6

s
in the nonlinear

restoring vector R. However, this assumption can easily be relaxed, which will result in
more complex algebraic expressions for the elements of the nonlinear restoring vector R. It
can be noted that although the mooring force is approximated by a cubic polynomial in the
displacements, a quadratic component also arises in the dynamic equations of the vessel,
arising from the o!set due to wind/current. It is also worth noting that the surge, heave and
pitch motions are coupled through nonlinearity in the mooring sti!ness. In the case of
a linear mooring, the surge and pitch motions are uncoupled from the heave motion.

5. POWER SPECTRAL DENSITY OF FORCE AND RESPONSE

In this section, power spectral densities of the forces and responses are obtained corre-
sponding to input by a two-sided wave elevation spectrum Gg(u). The representation of the
"rst-order force spectra is routine and given by

[G
f

0
0
(u)]"[F(u)][FM (u)]Gg (u), (41)

where the overbar denotes complex conjugate. The term [F(u)] is the "rst-order
force-transfer function matrix which represents the surge, pitch and heave exciting forces
due to a unit amplitude harmonic wave with frequency u. The expressions for the "rst-order
surge, pitch and heave exciting force transfer functions are known (Garrett 1971) and will
not be discussed here. The "rst-order power spectral density matrix of the response is then
given by
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where [H(u)] is the frequency response matrix corresponding to the vessel dynamic
displacements.

The power spectral density matrix (PSD) of R (A0
0
, A1

s
) is now determined. The "rst step is

to obtain the power spectral densities for (s
l
#k) and (s

r
#k). Using the Volterra series
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technique (Schetzen 1979), it can be shown that (neglecting the spike at u"0 due to mean
response components arising from the nonlinearities) a typical spectrum is
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Here, p2 is the variance of s
l
. The expressions for the two-sided spectra G
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respectively. The above expressions enable one to determine the PSD matrix [GR (u)] of
R(A0
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) in a straightforward manner. Then the PSD matrix of A0

1
is given by
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The next step is to determine the spectrum of low-frequency second-order forces. In
analysing the second-order responses, only surge and pitch degrees of freedom are con-
sidered [which are uncoupled from heave motion in the perturbation equations (7), (12), (17)
and (21)]. Using a two-term Volterra series expansion, the one-sided power spectral
densities of the low-frequency second-order forces can be written as (Langley 1987)
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where C1
0a and C1

0t are the conventional second-order force transfer functions de"ned by the
forces on the vessel due to two unit amplitude waves in bi-harmonic seas (Eatock Taylor
& Huang 1997).

From equations (23) and (24), it can be shown that the forces f 1
1a and f 1

1t can be written as
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The terms C1
1aa(u1

, u
2
), C1

1at(u
1
, u

2
) and C1

1ab (u1
, u

2
) are the new nonlinear force transfer

functions (symmetric in frequency) de"ned as the low-frequency hydrodynamic surge force
when a unit amplitude wave at one frequency interacts with a unit amplitude surge, pitch
and heave motion at a second frequency, respectively. Similar de"nitions can be introduced
for the terms C1

1ta, C1
1tt and C1

1tb representing nonlinear pitch force transfer functions. The
expressions for the low-frequency one-sided force spectra S

f
1
1a
, S

f
1
1t

and S
f

1
1af

1
1t

have been
derived. As these expressions involve complicated convolutions, only a typical expression,
namely S

f
1
1a

is given here:
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The expressions for S
f
1
1t

and S
f
1
1af1

1t
are given in Appendix A. The power spectral density

matrix for the nonlinear forces derived above can be used to determine the low-frequency
second-order responses in a straightforward manner.

6. NUMERICAL RESULTS

As an example of the above formulation, results have been obtained for a truncated cylinder
with radius R"10 m, draught d"30 m #oating in water depth h"100 m. From the
available "rst-order potentials, the expressions for the second-order forces f 1

0a and f 1
0t have

been derived. To simplify the analysis, the scattered potential due to the truncated cylinder
can be approximated by that of a bottom-seated cylinder (Huang & Eatock Taylor 1996;
Sarkar & Eatock Taylor 1998) in calculating all the second-order forces. The validity of this
approximation, which signi"cantly simpli"es the derivation of analytical expressions for the
various terms, has been justi"ed for the truncated cylinder by comparing results with those
obtained using a numerical approach. This was shown in Sarkar & Eatock Taylor (1998) in
relation to the surge drift force. It should be emphasized, however, that no such approxima-
tion is made while calculating the radiation potentials and the "rst-order forces.

Both f1
0a and f1

0t can be divided into two parts: one when the body is assumed to be "xed,
and the other due to "rst-order body motion. Furthermore, the second part consists of three
components, which are linearly proportional to "rst-order surge, heave and pitch motions.
Figure 2 illustrates the e!ect of "rst-order body motions on the mean second-order surge
force and pitch moment. To achieve clarity in this particular "gure, the hydrostatic
sti!nesses are here neglected in calculating the "rst-order body motion, to avoid the rapid
variations in the mean drift force and pitch moment near the heave and pitch resonances. It
is quite evident that both surge and pitch motion can signi"cantly in#uence the mean force
and moment, f1

0a and f1
0t. The e!ect of "rst-order heave motion on f1

0a and f1
0t is negligible in

this speci"c case, and is not shown in the "gure.
Figure 3 shows the new nonlinear transfer functions C1

1aa(u1
, u

2
), C1

1at(u
1
, u

2
),

C1
1ta(u1

, u
2
), C1

1tt(u
1
, u

2
), C1

1ab(u1
, u

2
) and C1

1tb(u1
, u

2
) at u

1
"u

2
"u. From equations

(23) and (24), each of these transfer functions consists of components from terms (I), (II), (III)
and (IV). The contributions of all these terms to each of these transfer functions are also
plotted in Figure 3. It can be seen that C1

1at (u, u) and C1
1ta(u, u) satisfy the expected

reciprocity requirement, to a good approximation. The slight error in reciprocity may be
due to the approximations in the "rst-order di!raction potentials used in the various
expressions. Physically, the term C1

1at (u, u) can be interpreted as the mean surge force
arising due to the interaction of a unit amplitude wave and a unit amplitude pitch motion at
frequency u. Similarly, C1

1ta(u, u) is the mean pitch moment arising due to interaction of
a unit amplitude wave and a unit amplitude surge motion at frequency u. The simpler
expressions for C1

1at(u, u) and C1
1ta(u, u) are given for a bottom-mounted cylinder in

Appendix B. These expressions have been used to check the program for the solution of



Figure 2. Variation of mean force/moment with frequency: } } }, "xed body; **, moving body;
} )} )}, surge contribution; ) ) ) ) ), pitch contribution.

Figure 3. Variation of new nonlinear transfer functions with frequency: **, total; contribution
from: (I) !!!; (II) } )- )- ; (III) }f}f} ; and (IV) ) ) ) ) ) ).
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Figure 4. Validation with bottom-seated cylinder: **, total for truncated cylinder; *}*}*, total
for bottom-seated cylinder; contribution from: (I) !!!; (II) } )} )} ; (IV) ) ) ) ) ) ) for truncated

cylinder, and
333

for bottom-seated cylinder.
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the truncated cylinder in the limiting case when the truncation depth goes to zero.
Figure 4 shows the comparison of the results in the two cases: the semi-analytical solution
derived for a truncated cylinder and a bottom-seated cylinder.

Next, the power spectral densities of the forces and responses are considered for various
system parameters. In calculating the response of the vessel, the linear mooring sti!ness k is
taken to be 5.5]105 N/m. The density of the vessel is three quarters the density of water
and the metacentric height GM is 2.5 m. The choice of damping is somewhat arbitrary in
order to simplify the interpretation. In any case, there remains considerable uncertainty
about appropriate values to use for damping of the nonlinear responses of realistic
con"gurations. The total damping values in low-frequency "rst- and second-order motions
are here taken to be "ve times and 15 times the "rst-order radiation damping. The mean
o!set a6

s
due to wind/current is taken to be zero. The one-sided power spectral density Sg of

the wave elevation corresponds to the ISSC spectrum [e.g., Bishop & Price (1979)] with
signi"cant wave height H

s
"13.5 m and mean zero crossing period ¹

z
"9.5 s. Di!erent

systems are considered by varying the cable connection points (b in Figure 1) and nonlinear
mooring sti!ness parameter c. Three cases are considered: b"0.35d, c"0.1 (case A);
b"0.4d, c"0.07 (case B); and b"0.45d, c"0.016 (case C).

Figure 5 shows the frequency response functions H(u) of the vessel for surge and pitch
motions for various cases. In can be observed that the increasing distance to the cable
connection points (b) steadily increases the distance between the two resonance frequencies,
as observed from the transfer functions for the surge and pitch. The low and high
fundamental frequencies correspond to predominantly surge and pitch modes, respectively,
for the three cases considered. Furthermore, it can also be observed that the cable
connection points do not in#uence the anti-resonance point in the pitch transfer functions.
It is also worth mentioning that the heave motion is uncoupled from the surge and pitch
motions for the speci"c mooring arrangements considered here.



Figure 5. Frequency response functions of the vessel: **, Case A; } } }, Case B; } )} )}, Case C.

Figure 6. Case A: autospectral densities of response: *, f 0
0
; *, f 1

0
; } } }, f 1

1
; ) ) ) ) ), f 0

1
.
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Figure 6 shows the auto-spectral densities of the low-frequency nonlinear responses for
case A. As mentioned before, the new nonlinear forces f1

1a and f1
1t arise because of the

interaction of the incoming wave with the low-frequency "rst-order resonant responses a0
1
,

b0
1

and t0
1
. For this speci"c case, it seems that there is a signi"cant contribution from the

"rst order nonlinear pitch motion t0
1
; this can e!ectively give rise to low (di!erence)

frequency forces as a result of the convolution, because the predominant pitch



Figure 7. Case B: autospectral densities of response: *, f0
0
; *, f 1

0
; } } }, f 1

1
; ) ) ) ) ), f 0

1
.
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resonance frequency is closer to the peak of the wave spectrum than the predominant surge
resonant frequency. In general, a0

1
, b0

1
and t0

1
can all contribute to f1

1a and f1
1t depending on

the system parameters. The e!ect of b0
1

on f1
1a and f1

1t is negligible for the three cases studied
here. In this calculatiion of the nonlinear responses a1

1
and t1

1
, the e!ect of the last term in

equation (22), namely F3 (A0
0
,A0

1
, A1

s
), was omitted in the interest of brevity, but it should be

noted that this can also contribute to the total response, as indicated in Sarkar & Eatock
Taylor (1998).

Figure 7 shows the spectra of responses for case B. In this case, the predominant pitch
resonance frequency falls just within the band-width of the wave spectrum, as observed from
the presence of the minute resonant peaks in the "rst-order wave frequency surge (a0

0
) and

pitch (t0
0
) responses. In this case, both nonlinear surge (a0

1
) and pitch (t0

1
) responses are

signi"cant, and a comparatively weak nonlinearity in the mooring can produce signi"cant
nonlinear surge and pitch responses, namely, a1

1
and t1

1
.

The spectra of responses for case C are shown in Figure 8. In this case, the "rst-order
pitch response is strongly in#uenced by the resonance e!ects. However, the "rst-order
nonlinear surge (a0

1
) and pitch (t0

1
) responses are now dominated by the predominant surge

mode, as observed from the locations of the peaks in the spectra of a0
1

and pitch t0
1
.

Furthermore, it can be noticed that the contributions of "rst-order nonlinear responses
a0
1

and t0
1

now exceed the contributions due to a1
1

and t1
1
, the response arising due to

nonlinear wave}structure interactions.

7. CONCLUDING REMARKS

A method developed to determine the low-frequency surge wave forces on a nonlinearly
moored vessel has been extended to consider the multi-degree rigid-body dynamics of
a #oating structure. The nonlinear dynamic behavior of the structure is modelled as
a Du$ng oscillator undergoing surge, heave and pitch motions. Under the assumption of
small wave slope and weak nonlinearity of the mooring sti!ness, a two-scale perturbation



Figure 8. Case C: autospectral densities of response: *, f 0
0
; *, f 1

0
; } } }, f 1

1
; ) ) ) ) ), f 0

1
.
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technique has been extended to solve the nonlinear water-wave boundary value problem.
As an example of the formulation, a semi-analytical solution has been derived for a #oating
truncated cylinder in "nite water depth. It is found that the additional low frequency
"rst-order responses arising due to nonlinear mooring sti!ness interact with the incoming
wave to give rise to additional low-frequency forces. These additional new low-frequency
forces are solely due to the nonlinear mooring sti!ness. The magnitudes of these new forces
can be comparable to those of conventional second-order forces calculated without taking
into account the nonlinear dynamics of the vessel.

From a statistical point of view, the conventional second-order forces arising in a linearly
moored vessel are the second-order transformation of a Gaussian random process. On the
other hand, the new nonlinear forces arising in a nonlinearly moored vessel are the
polynomials (up to fourth degree for a Du$ng's oscillator model) of a Gaussian random
process. These strongly non-Gaussian forces give rise to tuned resonant responses which
could signi"cantly in#uence the statistics of the extreme responses of the #oating vessel.

The results reported in this paper are based on the simplest form of an axisymmetric
#oating body, namely a truncated cylinder. Extending this analysis to the more general case
of multi-column o!shore platforms such as a semi-submersible, considering the six-degree-
of-freedom rigid-body dynamics of the vessel and e!ects of spread seas, will certainly shed
more light on the understanding of complex nonlinear wave}structure interactions ad-
dressed here. Furthermore, the results are based on a somewhat arbitrary choice of the
damping coe$cients, both to simplify the analysis and to highlight the e!ects of the
nonlinear interaction of the mooring sti!ness and the wave hydrodynamics. Further
investigation is necessary to resolve these issues.
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APPENDIX A: POWER SPECTRAL DENSITIES OF NEW NONLINEAR FORCES

The expressions for S
f
1
1t

and S
f
1
1af

1
1t

, analogous to S
f
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1a

in equation (50), are the following:
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APPENDIX B: THE EXPRESSIONS FOR THE NEW NONLINEAR FORCE
TRANSFER FUNCTIONS Cat and Cta FOR A BOTTOM-MOUNTED

CYLINDER

In this appendix, the semi-analytical expressions for the new nonlinear force transfer functions Cat and
Cta de"ned in equations (48) and (49) are given for a bottom-mounted cylinder of radius R in water of
depth h.

The scattered potential u
s
for a wave of amplitude a (MacCamy & Fuchs 1954), and the radiation

potentials for surge (amplitude a) ua and pitch (amplitude t) ut (Petrauskas 1976) for a bottom-seated
cylinder are given by
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In these expressions, H(2)
n

(m
0
r) is the Hankel function of the second kind of order n, and K

1
is the

modi"ed Bessel function of the second kind of order one. Following the solution procedure described
in Drake et al. (1984), the semi-analytical expression for the new transfer function Cat is given by
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2
"

1

2A1!
2m

0
h

sinh (2m
0
h)B.

Following a similar approach, the expression for transfer function Cta is derived as

Cta (u, u)

1
2
ognR

"!h ( fM
0
#fM

2
)
u2

g

=
+
j/0

Ga
j
#

2fM
2

R2 AGa
0
It

1
#

=
+
j/1

Ga

j
It

2B
#( fM

0
#fM

2
)AGa

0
It

3
#

=
+
j/1

Ga
j
It

4B!
2

m
0
R

fM
2

m
0
h sinh (m

0
h)!cosh (m

0
h)#1

m
0
cosh (m

0
h)

, (B2)

where

It
1
"P

h

0
zm2

0
dz, It

2
"P

h

0
zm

0
m
j
dz,

It
3
"P

h

0
zA

Lm
0

Lz B
2
dz, It

4
"P

h

0
z

Lm
0

Lz
Lm

j
Lz

dz.

As mentioned above, Cat and Cta must satisfy the reciprocity relation. It can readily be
noticed that the last terms of equations (B1) and (B2) are identical. But the agreement
between the remaining terms in the expressions for Cat and Cta (given in equations (B1) and
(B2)) is less apparent. However, the very close similarity of these remaining terms, and thus
the reciprocity requirement, has been checked numerically in Section 6.
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